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ABSTRACT

Curvature sensing is an intensity-based technique for wavefront reconstruction using two defocused images located on the
opposite sides ofthe focal plane. It requires either one detector placed at two consecutive axial locations or a dual path with a
pair of detectors from which the sensor signal is obtained. The method yields a sensitivity comparable to that of the
Hartmann test in the adjustment and evaluation of ground-based optical telescopes. We introduce the analytical framework
underlying the function of a curvature sensor which operates from a single defocused image. A series of twin images is
computed from the propagation law of the mutual intensity along the optical axis. The polynomial decomposition of the
wavefront allows retrieval of Zernike coefficients by means of the standard least-squares algorithm. The paper concludes
with a review of image sampling requirements and a discussion on the signal-to-noise ratio.
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1. INTRODUCTION

Wavefront retrieval based on curvature sensing has recently gained attention in telescope optics and optical testing
applications as an effective alternative to the Hartmann-based methods 12 and iterative phase-retrieval methods Curvature
sensing estimates the wavefront from two defocused images, typically located on opposite sides of the focal plane, by
making use of the irradiance-transport theory 5,6• The wavefront Laplacian (V2W) and its normal gradient along the pupil
edge are computed from:

S = d.(d - L).(l/L).[(aW/0n ).. - P.V2W1 (1)

where W (Xp,Yp) represents the wavefront in pupil coordinates (fig. 1):

Xp = (d!L).x, Yp (dIL).y (2)

x,y are image coordinates in the two out-of-focus planes, 5. is the Dirac delta function along the pupil edge, d is the paraxial
image conjugate ,L the axial defocus, P the pupil function (I inside the pupil and 0 outside), n represents the outward normal
direction to the pupil edge and S is the sensor signal given by:

S = [ 11(x,y) - 12(x,y) ]I[ 11(x,y) + 12(x,y)] (3)

in which 11(x,y) and 12(x,y) stand for the image intensity distributions67. Recording the two images requires either a single
detector positioned at consecutive locations along the optical axis or a pair of detectors arranged in a dual path. We propose
employing a single-detector/single-image setup and taking advantage of the propagation law for the mutual intensity along
the optical axis8. To make the derivation universal, we assume that the wavefront emerges from a quasihomogeneous
partially coherent source with a slowly varying amplitude distribution.
A number of approaches for solving the curvature sensing equation (1) have been developed and implemented6'9"°. We use
herein the standard wavefront expansion in Zernike polynomials because: a) it leads to a solution that is tractable in terms of
primary and higher order aberrations and b) enables retrieval of the expansion coefficients via well known routines of linear
analysis, in particular, the least-squares fitting algorithm.
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The outline ofthe paper is as follows: in the first section we obtain the digitized sensor signal (3) over a discrete (x,y) pixel
array. The next section deals with the Zernike representation of the wavefront and the Gramm-Schmidt orthogonalization
procedure which is applied to remove undesired numerical artifacts"'2. The least-squares solution of (1) is obtained in the
last section, where image sampling requirements and the signal-to-noise ratio are also reviewed.
The described method may have potential benefits for a wide range of applications in optical metrology (such as testing of
smooth aspherical refractive or reflective surfaces with large deviations from a reference profile'3) and real-time passive
ranging'4'5 (such as autofocus and machine vision systems).

2. DIGITAL REPRESENTATION OF THE SENSOR SIGNAL

For the sake of clarity, we consider only the one-dimensional imaging case. Referring to the setup depicted in fig. I , let {X}
{u}, {x1} and {x2} represent the coordinate set of the partially coherent source, its paraxial image and the two observation
planes. Let the position of the detector coincide with plane { I } . Take "i" and "j" to denote two arbitrary points lying in the
plane ofthe source. Ifthe source is quasihomogeneous, its mutual intensity may be expressed as'6:

J(X , X) = I(Xa).m(AX) (4)

in which m(AX) represents the complex coherence factor, I(Xa) 5 the slowly varying intensity distribution and:

Ax = x - x
(5)

Xa (X1+ X)/2

Similar expressions hold for all three image planes, under the assumption that imaging does not change the
quasihomogeneous property ofthe mutual intensity described by (4). Let {Xp} denote the coordinate set ofthe exit pupil:

Xp=d.x,/L (6)

and let the source, exit pupil and all image planes be digitized using pixel arrays with the following spacing constants,
respectively:

x, Xp, u, x1, 6x2 (7)

Take H to represent the linear extent of the source, D the lens diameter and X the average wavelength. We assume that the
coherence area ofthe light incident on the lens is much smaller than the lens area, that is'7:

H.D >> X.d0 (8)

The mutual intensity reaching the paraxial image plane is defined by'8:

J(u, , u) =J(i.u, j.u) =L i J(i.X, j.6X).K(i.öu, i.öX).K*(j.u , j.X) (9)

where "i" and "j" are point locators (i = 1,2...N ; j= 1,2...M) and K represents the amplitude spread function of the system:

K(i.u, i.X) = exp{jit.(k..d0 ). .(j.&i)2 }.exp{jit.(.d )I.(i.3X)2}.[1/(?2.do.d)] .P(i.Xp) (10)

in which:

P(i.Xp) =L P(i.Xp).exp{-j.2it.(?.d )'.{i.(u +d.d0-' .X).Xp] (11)

with P(i.6Xp) describing the complex pupil function:
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P(i.Xp) = P.exp[-j.W(i.Xp)] ( I 2)

By assumption (8), we can write:

P(i.Xp).P*(j.Xp) p2 (13)

which implies that the image mutual intensity is independent ofpupil aberrations.
The image intensity distribution corresponds to setting u, = u in (9), i.e.:

1(u1) = J(u1 , u,) (14)

It follows from (4) and (5) that the image complex coherence factor is given by:

m(Au) = J1(u1 , u)/I(u1) (15)

in which:

Au=u-u(j-i).&i (16)

According to the generalized van Cittert-Zernike theorem, the mutual intensity reaching plane {2} by forward radiation from
the image plane , is found to be'9:

J2(x2,, x2) = J2 (i.x2,j.x2) = k(x2).exp(j.i1j).(X.L)2. Li I(ua).exp.2.7c.(X.L)'.(Ax2.ua)] (17)

ifthe following condition holds true:

L >( 2.H.l/X) (18)

where l is the coherence length of the source. In (17) we have used the following notations:

x2. = [(i -Fj).x2]/2

Ua = [(i +j).3u]/2

Ax2=(j-i).x2 (19)

k(X2a) =L i m(Au).exp[j.2i1.(X.L)'.x2a. AU]

= 7t.(X.L)-.x22.(j2 j2)

From (17) we derive the intensity distribution at plane {2}:

12(x21) = J,(x21, x2,,) (20)

Replacing (20) and the detected intensity:

I,(x,1) = I,(i.öx,) (21)

in (3), we obtain the digitized sensor signal as:
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S(i) = [ I,(x11) — I,(x21) I/Il 11(x1,) + 12(x,) ] (22)

The sequence of steps leading to (22) is summarized below:

source [J(X , X1), m(AX)1 paraxial image plane [1(u)] plane {2}[12(x21)j sensor signal [S(i)] (23)

lfthe source characteristics are unknown (which is often the case in practice), a similar approach may be developed by first
computing the mutual intensity in the paraxial image plane from the recorded mutual intensity and complex coherence factor
in plane { 1 } . The procedure is greatly simplified in incoherent light because the complex coherence factor reduces to a Dirac
delta function8. The sequence ofsteps leading to (22) then becomes:

plane {l}[I(x)} = paraxial image plane [1(u)] plane {2}{12(x21)] = sensor signal {S(i)] (24)

3. WAVEFRONT EXPANSION IN ZERNIKE MODES

Zernike polynomials provide a convenient representation of the wavefront which is customarily used in optical testing and
interferometry' 20• The standard wavefront expansion over the one-dimensional array is:

W(iXp) = W(i) =k Ck.Zk(i) (25)

where k =1,2...K is the mode index. Zernike polynomials form a complete set of orthogonal functions over the continuous
unit circle, but fail to maintain orthogonality over a discrete array of points' ', i.e.:

i Zk(i) .Zk'(i) kk' (26)

It can be shown that this condition may lead to undesired crosstalk between modes and noise amplification in applications
involving wavefront fitting by the least-squares method"21. The Gramm-Schmidt procedure is applied to restore the
orthogonality property by constructing a new set of functions G. such that:

G(i).G(i) =ö (27)

W(i) = uB.G(i) (28)

in which u = 1,2...K. The relationship between the original Zernike polynomials and the new ones is determined by":

Zk(i) =uAk.G(i) (29)

where:

Ak = Zk(i).G(i) u k
(30)

Akk2 =i [Zk(i)12 — uAk

It can be shown that the original expansion coefficients (Ck) and the new ones (Be) are related through the following
expressions:
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CK=BK/AKK (31)

Ck (Bk U AUk.CU)/ Ckk (32)

in which summation is taken from u = k+1 to K and k = l,2....(K-1). By differentiating (28) we obtain:

aw/on = aW(i)/oi=u (33)

V2W(i) = u B.V2G(i) (34)

with u = 1,2K. Direct substitution of(33) and (34) in (1) yields the linear system ofequations

S(i) =u B Q(i) (35)

where B are the unknowns expansion coefficients and:

Q(i) = d.(d - L).(1/L).{(aG(i)/E9).5. —P.V2G(i)] (36)

The linear system may be cast in matrix form as:

S =Q.B (37)

where Q denotes a rectangular matrix with N rows and K columns (NxK), S is a N-dimensional vector and B a
K-dimensional vector. Note that Q(i) represents the sum of two components, the first one assuming nonzero values inside
the pupil (i.e. V2G(i) 0) and the second one assuming nonzero values on the pupil edge (oG()/a 0). For applications
involving retrieval ofonly wavefront tilt, defocus and astigmatism, the sensor signal S is exclusively collected from the pupil
boundary due to the vanishing Laplacian associated with these modes'°.
The object of the next section is to derive the generic least-squares solution of (37) for the expansion coefficients B and to
evaluate the contribution of noise to the wavefront retrieval process.

4. THE LEAST-SQUARES SOLUTION AND WAVEFRONT ESTIMATION ERRORS

The system described by (37) may be solved using a variety of numerical methods such as direct ones (Gauss elimination,
the method of band matrices) or iterative matrix algorithms22'23. If N>K, the linear system is overdetermined (the number of
sampling points is larger than the number of Zernike modes) and it is suitable for the least-squares algorithm. Enhanced
resolution may be gained by computing the sensor signal in multiple sampling planes along the optical axis and averaging
the individual outcomes.
Multiplying (37) from the left by QT(Q transpose) we obtain the normal form:

(QT.Q).B = QT.S (38)

To extract the least-squares solution from (38), one needs to multiply the right-hand side by the inverse of (QT.Q). This
standard procedure is valid only if the normal equations are not ill-conditioned, that is, if the square matrix (QT.Q) is not
singular. It can be shown that (38) is well-conditioned if G(i) are normalized to have zero mean and the wavefront
expansion is taken with the piston term removed (minimum norm solutions)2324.
Assuming that the normal equations are or have been brought to a well-conditioned form, the standard least-squares solution
is given by:
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B = (QT.Q)'. QT.S (39)

There are two basic sources of error in the wavefront retrieval process.The first one relates to the finite sampling density of
the continuous image received at plane { I ) . For an aberration-free lens, the image is bandwidth limited by diffraction, i.e.
contains spatial features with frequencies less than the cutoff value:

f=2.NA/X (40)

where NA is the lens numerical aperture in image space. Undersampling occurs when the sampling frequency is less than the

Nyquist frequency (2.f). Thus , to avoid undersampling, u must satisfy:

u�X/(4.NA) (41)

which defines the resolution limit in the paraxial image plane. The corresponding object and image resolution limits in { }
and {2} may be obtained from (41) by appropiate scaling. Aliasing may occur if:

3u�X/(4.NA) (42)

The second source of error is created by noise in the detection and computation of the sensor signal. We assume that the
sensor signal contains randomly distributed additive noise:

S = S0 +

(43)
s = Sd +

where Sd and öS. are the detection and computation noise contributions and S0 the noise-free signal. The first order
variation ofthe sensor signal (3) in vector form is:

c5S = (as/3I).I + (as/812).312
= [21(1+ 12)2].(17.31 11.612) (44)

in which 3II(2) are the intensity noise vectors. Let the resulting estimation error in the expansion coefficients matrix be B,
that is:

B=B0+B (45)

with B0 representing the noise-free coefficient matrix. Substituting (43) and (45) in (38) yields the normal set of equations:

(QTQ)5B = QT.6S (46)

and the standard least-squares solution:

= (QT.Q). QT (47)

From (28), the wavefront error induced by 5B is:

öW(i) =uB.G(i) (48)

It can be shown23 that for signal variations SS that are equal in magnitude (SS0) and uncorrelated, the mean-square wavefront
error is given by:
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E = (1/N2). i K W(i)2 ) (S0)2.tr (QT.Q) (49)

where tr (QT.Q)1 stands for the sum ofthe diagonal elements. On the other hand, the noise-free wavefront is:

W0(i) = u B0.G(i) (50)

with B0,, representing the noise-free components of matrix B0.From (44), (49) and (50) one can define the "signal-to-noise"
ratio for the wavefront retrieval as:

SNR(i) = W0(i)/E = W0(i)I{[21(l+ 12)2.(12.E,I I,.EI7)]2. tr (QT.Q)'} (5)

or:

SNR(i) =W0(i)/{[2/(I+ I7)2.I.I2.(I/II _312/12)12. tr (QT.Q)} (52)

The above formula relates the signal-to-noise ratio of the wavefront retrieval to the signal-to-noise ratio of the detection and
computation processes:

SNR=I/I (53)

SNRC 1,/Si2 (54)

We may use (52) to determine the combination of values for SNR and SNRJ that maximizes SNR. The general conditions
defining the SNR extremum are:

8SNR/SNR =0

aSNRIaSNRC =0
(55)

[o2SNRIa(SNRI)2J.[o2SNR/o(SNRC)2I - [öSN8(SNR).a(SNR)]2 > 0

öSNRI8(SNRJ)2 <0

Next we illustrate the above procedure with a simple numerical example. Assume that the ideal detected image is a unit step
function and let it be degraded by the following range of uniform noise values:

II,q =.1+.0l.q (56)

where the range variable (q) is specified by:

q=1,2,...50 (57)

The corresponding detection signal-to-noise ratio is:

SNRdq (13Ii,q)/EI1,q (58)

Assume that the computation noise is also uniform and described by the range:

612,q = .05+.002.q (59)

120

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



SNRc.q [(1It,q}6I2,q]/I2,q (60)

If the noise-free wavefront W0 and the sum of diagonal elements tr (QT.Q)l are taken as multiplicative constants, the
wavefront signal-to-noise ratio (52) becomes:

SNR = (const)/{4.[2.(I -E4 ,q)E12,qI2.( 1 Ei ,q)2.( I Ei I,q612,q).[(I /SNRcj,q>( 1 /SNRjq)]2} (61)

The variations of SNRCq, SNRq as functions of the range variable (q) and the variation of SNRJ,q as function of the detection
noise range Ij,q are plotted in figs. 2 to 4. The SNR maximum occurs for:

Ii,q.110
(62)

E12,q .098

5. SUMMARY

The operation of a single-detector curvature sensor in partially coherent illumination has been analyzed. Using the Zernike
decomposition of the wavefront, we have derived the least-squares solution of the sensor signal equation (1). We have also
investigated how the overall signal-to-noise ratio is degraded by generic detection and computation errors.
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FIG. 1
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